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The development of the magnetohydrodynamic flow field due to the discharge 
of an electric current J, from a point on a plate bounding a semi-infinite viscous 
incompressible conducting fluid is considered. The flow field is the response of 
the fluid to the Lorentz force set up by the electric current and the associated 
magnetic field. The problem is formulated in terms of the dimensionless variable 
(vt)i/r and solved numerically. Here Y is the coefficient of kinematic viscosity, 
t the time from the application of the electric current and r the distance from the 
discharge. It is shown that the streamlines of the developing flow field in a cross- 
section through the axis of the discharge are closed loops about a stagnation 
point. As the flow field develops, the stagnation point moves to infinity along 
a ray emanating from the discharge with a speed proportional to t-4. The steady 
state, within a distance r from the discharge, is practically established when 
t = r2/v.  

1. Introduction 
The flow field set up by the discharge of an electric current in a semi-infinite 

incompressible fluid has applications in welding problems and has been con- 
sidered by several authors (Lundquist 1969; Shercliff 1970; Sozou 1971; Sozou & 
English 1972). The current is discharged radially into the fluid from a point on 
a plane bounding the fluid. The flow field is set up by the rotational Lorentz force 
due to the current and the associated magnetic field. The work of Lundquist 
dealt with the linear problem (slow viscous flow). Shercliff retained the inertia 
terms in the momentum equation but ignored the fluid viscosity. This produced 
a singularity in the flow field everywhere along the axis of the discharge. This 
singularity is removed when the viscosity of the fluid is taken into consideration 
(Sozou 1971). The work of Sozou & English was more general, taking into 
account also the interaction of the velocity with the electromagnetic field. This 
interaction affects the overall velocity and current distribution when the para- 
meter 47rvcr, v being the electrical conductivity of the fluid, is of order unity. 

The solutions presented by these authors are based on similarity considerations. 
The flow field has a jet-like structure, similar to that of the momentum jet 
considered by Landau in 1944 (see Landau & Lifshitz 1959, p. 86) and by 
Squire (1951, 1952). 
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All the papers mentioned above study the steady state. The development of 
these flow fields has never been considered. The equations describing this 
development are very involved, even in the linear case. These problems have to 
be tackled numerically. Here we consider the development of the flow field due 
to a current discharged into a viscous liquid from a point on a fixed plate bounding 
the liquid. We formulate our problem under the assumption that, on switching 
on the discharge, the electromagnetic field is established instantaneously. We 
also assume that the effect of the velocity on the electromagnetic field is negli- 
gible, that is, we investigate the response of the fluid to the application of a 
steady Lorentz force. Our problem involves a fourth-order nonlinear partial 
differential equation, which we decompose into two second-order differential 
equations of mixed type. These we solve by iteration. 

2. Formulation of the problem 
We consider an incompressible viscous conducting fluid of density p and 

coefficient of kinematic viscosity v occupying the semi-infinite region 0 < B < in- 
of a spherical polar co-ordinate system ( r ,  0,  #). At 0 = &n there is a fixed plate 
bounding the fluid and a t  the origin there is a current source (mathematically 
a point) which is suddenly switched on and supplies to the fluid region an electric 
current J,. We assume that the electric current density j and magnetic induction 
B are set up instantaneously and the velocity field v is set up gradually as the 
response of the fluid to the rotational force j x B. If we neglect the effect of the 
velocity on the electromagnetic field and assume that j is symmetric with respect 
to the axis B = 0 and purelyradial, we find that (Sozou 1971) ine.m.u. j and B are 
given by 

where p = cos 19. 

equation becomes 

j = i'J,/2n-r2, B = 4 x 2J0(1 -p ) / r (  1 -p2)*, (1)) ( 2 )  

On eliminating the pressure from the momentum equation our governing 

(31 V x [&/at+ (V x v) x v] = -vV x V x V x v + V  x (j x B)/p. 

The velocity field is obviously symmetric about the axis B = 0 and we satisfy the 
continuity equation by means of a stream function $. We assume 

$ = v v ( p , 4 ,  

where h = (vt)&/r. v is then given by 
(4) 

= (-v/y) bp (g-AgA)/(1-p2)')  O1, ( 5 )  

where a suffix denotes partial differentiation with respect to that variable. If we 
now use (I), (2) and ( 5 ) )  after a little algebra, (3) reduces to 

( - p 2 ) f p p  - 4pfp + A 2 f h A  + ( 4A - 1 / 2 A ) f A  - 3fgp - gfp + A ( f A  gp - f p  gA ) = I</( f 7 

(6) 
where g(p, A )  satisfies the equation 
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Equations (6) and (7) must be solved in the region 0 6 p < 1, 0 < h 6 co. I t  is 
expected that the steady state will be reached exponentially with respect to time. 
Thus, if we split the solution into a steady and an unsteady or h-dependent 
component, for a fixed r as t -+ CQ, that is, as h -+ co, the h-dependent component 
of the solution will die out exponentially with respect to A. This implies, of 
course, that as h .+ co 

(8) hf,, h2f,,, hg,, h2g,, -+ 0. 

On eliminating f between (6) and (7), making use of (S), we find that in the 
steady state g(p, 00) = gm(p) satisfies the equation 

(1 -p2) 9% - 4pg; - 39: g: - gag: = K/(  1 +p), (9) 

where a prime denotes differentiation. This equation was also obtained by Sozou 
[1971, equation (7)] for the corresponding steady-state problem. Thus, if we 
assume that (8) holds, as t -+ co our solution will have the expected behaviour. 
It is not very easy to solve (6) and (7) in the semi-infinite interval 0 < h < co and 
the assumption of an exponential decay of the h-dependent parts off and g 
simplifies our computations considerably. This assumption, justified a posteriori 
by our results, enables us to restrict our solution to the strip 0 < p < 1, 0 6 h 6 A, 
where A is a finite quantity. 

If we assume that g is specified, (6) is a linear equation in f which is elliptic in 
the region of interest and becomes parabolic on h = 0 and on ,u = 1. Similarly, if 
we assume that f is specified, (7) is an elliptic equation in g which becomes 
parabolic on h = 0 and onp = I. We can specify g and solve (6) for f. That solution 
can be used in (7) to construct a better approximation to g, which is then used in 
(6) for a better approximation to f and so on. 

The boundary conditions on f and g for the solution of (6) and ( 7 )  are 

f (p, 0) = g(p, 0) = 0, g(0, 4 = g,(O, 4 = 0, (lo), (11)  

g(p, 4 = g'rJ(lC), f (p, 4 = g 3 p ) ,  g(1,A) = 0, (12)-( 14) 

-4f,+h2f,,+(4h-1/2h)f,-3fg,+hf,g, = +R on p = 1. (15) 

Equation (10) means that when we switch on the electromagnetic field f and g 
are zero and (1  1) means that v = 0 on the fixed plate. Equations (12) and (13) 
imply approximation off (p, co) by f (p, A) and of g(p, co) by g(p, A). Equation (14) 
implies that v is finite on the axis p = I. Equation (15) is derived from (6) under 
the assumption that f,, is finite onp = 1. In the special case h = 03, fPpis finite on 
p = 1 and for consistency f,, must be finite on p = 1 for all A. Besides this we 
cannot see any reason why fp, should not be finite for all h on p = 1. It must be 
noted that onp = 0 there is no explicit boundary condition for f, and g seems to be 
over-specified, since on p = 0 we specify g and its normal derivative. This is 
overcome by satisfying the condition g(0, A )  = 0 and then choosing f (0, A )  such 
that g,(O, A )  = 0. In  view of (7) it is obvious that we must set 

f = g,,(O, 4- (16) 

This equation represents the boundary condition for f on p = 0. 



612 C. Soxou and W .  M .  Pickering 

3. Initial motions 
For h < 1 the dominant term on the right-hand side of (6) is -f$h, except 

near p = 0, where owing to boundary-layer effects fFF need not be small. Thus, 
except very near p = 0,  for small h the solution of (6) may be approximated by 

The appropriate solution of (7) is then found to be 

and thus from (4) we obtain 

ffi-Kh2/(1+p). (17) 

9 = Wh2P(1-P)  (18) 

for vt/r2 < I. 

Equation (18) does not satisfy the condition g,(O, A )  = 0, since the form for f given 
by (17) is not valid near p = 0. The approximation to @ given by (19) is inde- 
pendent of v. This expression corresponds to the solution of the linearized inviscid 
form of (3), which is valid initially, when the velocity is small, but only a t  
distances to which the vorticity generated near the solid boundary has not had 
time to diffuse. For an investigation of the initial development of the flow near 
p = 0 we should construct a solution of (6) and (7) valid in an ‘inner’ region near 
p = 0 and match this with (17) and (18) in an intermediate region. This we do not 
propose to do but shall present a numerical solution of (6) and (7) under the 
boundary conditions (lo)-( 15). We note briefly, however, that we must have 
f (0, h)  > 0 and thus, for small A, f changes sign as p increases from zero to one. 
The condition f (0, A )  > 0 follows from (ll), (16) and the fact that in the steady 
state ( A  = co) g,, > 0 on p = 0. f(0, A )  must be of the same sign for all h since if 
this were not the case, in view of (1 1)  and (16), there would be a flow reversal near 
p = 0 a t  some time. This we consider unlikely. 

4. The numerical method 
Our fundamental equations (6) and (7) are of mixed type: they are elliptic 

within the domain of interest, 0 < p < 1,  0 < h < A, and become parabolic on 
part of the boundary, that is, o n p  = 1 and on h = 0. The numerical solution of (6) 
is particularly complicated since, as a consequence of the boundary condition 
(15), the line p = 1 is included in the solution domain for f. On the remaining part 
of the boundary,fmay be determined from g by making use of (7),  (10)-(12) and 
(14 ) .  We found it convenient to use the transformation (Bitsadze 1964, p. 58) 

and hence express (6) in the form 
B = (1 -PI* (20) 

(2-72)F,,--  (2AG,-2G-6+7v2) F,/7+4h2FAA 

+ Z(8h - h-’ + AG,/v) FA + 6G, F/q  = 4K/(2 - q2) ,  (2 1 )  
where F(7, A )  = f( 1 - r2, A )  and G(7,  A )  = g (  I - r2, A) .  Equation (21) is now elliptic 
throughout the region of interest 0 < 7 < 1, 0 < h < A and since f, and gF are 
finite everywhere, in the limit 7 --f 0 we must have 

F,(B74/7 = F,,, G,(7A/B = G,,. (22) 
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The boundary conditions for the solution of (21) ,  obtained by transforming those 
for the solution for f, are 

F(7, 0 )  = 0, F(r7 A) = glb(p), (231, (24 )  

F ? p ,  4 = 0, F ( L  = g,,(O, 4. (251, ( 2 6 )  

Equations (22 )  and (25 )  replace (15) and represent the condition that the partial 
derivatives off are finite on p = 1. 

Equation ( 7 )  is elliptic in the region of interest and g is specified on all 
boundaries. The condition g,(O, A )  = 0 may be satisfied by assuming 

g ( b 4  = a(@)2F(L 4 (27) 
and using this as a boundary condition; that is we can solve (7) in the region 
6p < p < I, 0 < h < Rand assume that, on 8p, g is given by (27 ) .  It is, of course, 
possible to transform ( 7 )  into an 7, h plane. In view of the relative simplicity of 
(7) and the fact that (7) is completely elliptic within the region of interest we did 
not pursue this approach. 

For a given K we constructed the solution of our problem by iteration as 
follows. We specified an initial approximation for g, estimated the boundary 
values for F and then solved (21 )  for F .  The constructed value of F was sub- 
stituted in ( 7 ) ,  which was solved for g. We then respecified F(1,  A), using (26 ) ,  and 
substituted the new g in (21 ) ,  which was solved for a better approximation to F 
and so on. We repeated this process until convergence was obtained. We assumed 
that convergence was achieved when mesh-point values for F and g changed by 
less than 0.1 % between two successive iterations. Below we outline the numerical 
methods employed to solve (7) and (21 ) .  

The region 0 < 7 < I, 0 < h < A was overlaid with a rectangular mesh with 
intervals 67 and 6h. The choice of a constant mesh length 87 implies that the 
corresponding mesh length 6p in the p, h plane is variable. This introduces little 
extra complication in the finite-difference representation of ( 7 )  since, using 
Taylor series, it  is a straightforward matter to derive a second-order finite- 
difference formula for g,, using three unequally spaced points. The term g,, was 
approximated by the standard second-order central-difference formula. Thus 
(7)  was approximated by a set of linear algebraic equations for g at the mesh 
points. 

The difference representation chosen for (21 )  was rather more involved since 
this equation contains terms in F, and FA whose coefficients can become large 
compared with the coefficients of F,, and FAA, respectively. A method for dealing 
with such terms has been suggested by Allen (1962).  FoIlowing his approach we 

(28( 
set 

so that 
4h'F ,~+2(8h-h- l+hG, / r )  F,+6G1F/7/r-4K/(2-72) = -a. (29 )  

The basis of Allen's method is to solve the differential equations (28 )  and (29 )  as 
if they were ordinary, treating the coefficients as locally constant. Thus, for 
example, in the neighbourhood of the mesh point (yi, hj)  the solution of (28 )  may 

(30) 
be written as 

F =A+Bexp(-a,j7)+ay/bil, 

(2-72)F7r-(2hG,-2G-6+772)F,/7 = CC, 

33 F L M  70 
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FIGURE 1. Values of G, as functions of A, for specific values of 7, for the cases 
( a )  K = I and ( 6 )  K = 150. The numbers on the curves are values of 107. 

where A and B are arbitrary constants, aij = - 2[(AG, - G - 3 + &3/7(2 - r2)lii 
and bij = (2--73aii. A finite-difference approximation to (28) may then be 
generated by eliminating A and 3 from the expressions for Fii, Fi+lj and Fi-lj, 
obtained from (30). Equation (29) may be treated in a manner similar to that for 
(28), and by eliminating cx from the resulting difference approximations to these 
equations we generate the finite-difference approximation to (21). A practical 
difficulty, however, is that the exponential terms associated with the local solution 
of (29) become very large for small A. I n  order to avoid this we approximated (29) 
everywhere by using the standard second-order difference formula for FA, and a 
two-point backward difference formula for FA. The evaluation of F (  1, A )  from (26) 
was also based on second-order differences. 
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FIGURE 2. Streamlines of the developing velocity field for the case K = I at  ( a )  T 3 (vt)*/ 
L = 0.1, ( b )  T = 0.5, ( c )  T = 1, (d) T = 2 ,  ( e )  T = 10 and (f) T = 00. The numbers on 
the curves are values of lOOO@/vL, where L is a characteristic length. The distances along 
the axes are in units of L. 
FIGURE 3. Streamlines of the developing velocity field for the case K = 150 at  (a )  T = 0.1, 
( b )  T = 0-5, ( c )  T = 1, ( d )  T = 2, ( e )  T = 10 and (f) T = 03. The numbers on the curves are 
values of IO@/vL, where L is a characteristic length. The distances along the axes are in 
units of L. 

The presence of the term FA/h in (21) and the boundary conditions for F and g 
on h = 0 implies that F must be evaluated very accurately near h = 0, in order 
that the finite-difference scheme should be a good approximation to (21) near 
h = 0. In order to obtain the correct behaviour for F near h = 0 and improve the 
rate of convergence of the solution we employed (1 7) as a boundary condition on 
Sh for p 2 0.2. For p < 0.2 we made use of the finite-difference representation of 
(21) in order to accommodate the expected change in the sign of F .  For small A, 
values of g determined from the numerical solution of (7) agreed well with those 
predicted by (1 8). 

The solutions of the difference equations representing (7 )  and (21) were 
obtained by successive over-relaxation. In  the computations we set A = $ and 
chose the step lengths Sh and Sq as 0.033 and 0.05, respectively. 

33-2 
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5. Results and discussion 
The steady-state flow field develops singularities-that is, it breaks down 

(Sozou 1971) -when the parameter K exceeds 300.1. Thus the developing flow 
field will exist for all h provided that K < 300.1. We performed computations for 
some K in the range 1-150. When K is O( 1)  

I f 1  < 1, g Q 17 (31) 

and (21) is, in effect, linear. When K is O(100) the inequalities (31) are no longer 
valid everywhere and our problem is nonlinear. 

Our results show that, for a given 7, G increases with A until it reaches a 
maximum and thence as h increases G decreases monotonically to its steady 
value. For a given 7, as K increases the maximum value of G, relative to its steady 
value, increases and also occurs at a lower value of A. This is illustrated clearly in 
figure 1, where values of G are shown as functions of A, for some specific q,  for the 
cases K = 1 and K = 150. Inspection of figure 1 shows also that the value of G 
at h = 1 is hardly different from that corresponding to the steady state. Detailed 
examination of the computer output reveals that G(7, l )  is larger than G(q, co) by 
about 2 yo except very close to the axis of the current (7 = 0) ,  where the difference 
is of the order of 8 yo. This implies that, within a hemisphere of radius r about the 
origin, the steady state is practicalIy reached within a time r2/v. It also justifies 
our setting the time A = co at h = A = $. 

It is easy to deduce from figure 1 that, during its development, the flow field 
contains one stagnation point, in effect one stagnation ring about the axis q = 0. 
We note that + = v(vt)*G/A. Since as h + 0, GlA -+ 0, it becomes obvious from 
figure 1 that for a given value of 7 there exists a A, say A,, for which the function 
Glh is a maximum. Since G(0, A )  = G( 1, A )  = 0, it is evident that there exists a A,, 
say A,, corresponding to a particular 7, say yAf, such that G(vM,AM)/A, is a 
maximum. The point (A&,, v ~ , )  corresponds to a maximum in 3 and is a stag- 
nation point. 

In  the physical, r7 ,u plane the streamlines, at  any time t after the application of 
the current, are closed loops about the stagnation point ((vt)j/A,, 1 -7k). As t 
increases the velocity field develops and the stagnation point moves to infinity 
along the line ,u = 1-7& with speed v*/2A,tt. Figures 2 and 3 show flow-field 
lines at  various times for the cases K = 1 and K = 150. For K = 1, A, fi 0.24 
and ,uLM fi 0.58 and for K = 150, A, fi 0-27 and ,u, fi 0.56. From this and other 
computational results we examined, it is evident that as K increases so does A,. 
Thus the larger K is the longer it takes the stagnation point to propagate to 
infinity and the velocity field to develop. This is also evident from figures 2 and 3. 
Inspection of these figures shows that for a particular value o€T = (vt))fL, where 
L is a characteristic length, say T = 10, the centre of the streamlines (maximum 
value of $) is further from the origin for the case K = 1 than for the case K = 150. 

We are indebted to Mr D. J. Mullings for programming assistance. 
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